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En este trabajo se describe una prueba directa (sin usar el teorema de compacidad) del hecho de que el 
método de árboles o tablas semánticas de primer orden es completo en el sentido fuerte, es decir: que si 
una fórmula ϕ es una consecuencia de primer orden de un conjunto arbitrario de fórmulas Φ (no 
necesariamente contable), entonces existe un subconjunto finito Φ0 de Φ tal que el conjunto Φ0 ∪ 
{ ¬ϕ } genera una tabla cerrada. Además, se hará una observación incidental sobre un aspecto de la 
monotonía del método de tablas que ha dado lugar a algún error en la literatura publicada. 
 
Palabras clave: Completud fuerte, prueba de Henkin, tablas semánticas, método de árboles, monotonía. 
 

Appropriate indications are given on how to adapt Henkin’s proof of the strong completeness theorem 
for the predicate calculus as to obtain a direct proof (without using compactness) of the fact that the 
most user-friendly formal method of deduction, the Beth-Smullyan method of first-order tableaux, is 
similarly complete, in the sense that if a formula ϕ is a first-order consequence of an arbitrary set Φ of 
formulas, there is a finite subset Φ0 of Φ such that the set Φ0 ∪ { ¬ϕ } generates a closed tableau. Also, 
an incidental remark will be made concerning the monotony of the method of tableaux, on a problem 
which has led to a technical mistake in some of the published literature. 
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1. Introduction 
Amongst all known formal systems of deduction for first-order logic, the 

Beth-Smullyan method of semantic tableaux is by far the most user-
friendly. It is virtually algorithmic (indeed, totally algorithmic in the most 
rudimentary versions), extremely elegant and easy to use, and very natural 
too, mimicking the principle of indirect proof, familiar from informal 

                                                           
1 The research leading to this paper has been conducted at the London School of Economics, 
under the direction of Professors Colin Howson and Moshé Machover, and supported by the 
British Council, the British Academy and Caja de Ahorros del Mediterráneo. 
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deduction. In addition to this, most of its corresponding metatheory is as 
simple and handy as that of any linear calculus; in particular, the method 
has been proven to be complete in several weak senses, including  

(1) complete with respect to finite sets of formulas (e.g. [1], [2]), and  
(2) complete with respect to denumerable sets of sentences (e.g. [3], with 

gaps: cf. Note 2).  
Moreover, when the method is presented in a monotone format (see Def. 

2.1 below), and due to the compactness of first-order logic, the weak 
completeness in sense (1) entails the full or strong completeness too, that 
is, completeness for arbitrary sets of formulas (cf. van Benthem [2]).  

However, somewhat surprisingly, it seems that a direct proof of this 
strong completeness theorem for tableaux has never been actually 
published. The aim of this paper is to fill the gap by showing how we can 
obtain such a proof simply adapting Henkin’s well-known proof [4] of the 
strong completeness of the predicate calculus. 

Also, an incidental remark will be made concerning the monotony of the 
method of tableaux, on a problem which has led to a technical mistake in 
some of the published literature. 

 
2. Discussion 

In the sequel (except in Note 2) first-order languages will be assumed to 
have a single quantifier, ∀, and equality. An appropriate method T of 
constructing tableaux for finite sets of formulas is defined in the usual way. 
I follow Bell and Machover [1] on all basic settings concerning the 
language and T, as well as on all general terminology and notational 
conventions (except that I avoid the use of bold type, replacing it by plain 
type or italics); in particular, T will have three equality rules, corresponding 
to the three usual axioms of equality, rather than a substitution rule. Of 
course, with minor modifications what follows can also be applied to those 
methods having a substitution rule, as well as to most current settings 
where other details vary. 

Now let L be a first-order language. Sometimes I simply say ‘variable’, 
‘formula’, etc., meaning ‘variable of L’, ‘formula of L’, etc., respectively. 
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2.1. DEFINITION. Let Φ  be an arbitrary set of formulas and ϕ any 
formula. We say that ϕ is deducible from Φ by the first-order tableau 
method T (briefly, Φ├─T ϕ) when there is a finite subset Φ0 of Φ such that 
the set Φ0 ∪ { ¬ϕ } can be confuted ─i.e., generates a closed tableau─. 

Notice that, by contrast with what happens with linear deductions, a 
closed tableau for Φ0 ∪ { ¬ϕ } may become invalid if we add more 
formulas from Φ ⊇ Φ0 to its initial node. Indeed, the restricted rule for the 
negated universal quantifications may have been applied in the tableau, 
using critical variables which appear free in those new formulas. 

In most of these cases it is easy to find a new confutation for Φ0 ∪ { ¬ϕ } 
to whose initial node we may add any formula from Φ without invalidating 
it. Indeed, we can simply imitate the original tableau, but wherever the 
restricted rule has been applied with a critical variable which is free in Φ, 
we use instead any other variable that is neither free in the upper nodes of 
the branch in question nor in Φ ; and from that point onwards we continue 
the tableau likewise, but using this new variable in place of the old one. It is 
quite clear that the result of this transformations is another confutation for 
Φ0 ∪ { ¬ϕ } according to the rules of T. 

However, when the number of variables of L which are not free in Φ is 
smaller than the number of times that we need to apply the ¬∀-rule in 
some branch, such a confutation will not exist. For example, let L contain a 
unary predicate symbol P and put 

 Φ = { ∀x¬¬Px, Py: y is an L-variable }, and 
 ϕ = ∀xPx. 
It is immediate that Φ├─T ϕ simply taking Φ0 = { ∀x¬¬Px } ⊆ Φ. 

However, any closed tableau for { ∀x¬¬Px, ¬∀xPx } must contain an 
application of the rule for the negated universal using some critical variable 
y, so that the addition of the corresponding formula Py ∈ Φ to its initial 
node will invalidate it2. 

                                                           
2 This point has led to some minor errors in the literature. Notably, the tableau method described 
in Boolos and Jeffrey [3] is not complete in the way they claim it to be (see p. 131) because the 
application of the ∃-rule is restricted to the use of a critical constant ─rather than  a variable─ 
which does not occur at all in the set of premises (p. 123). If we then put, similarly as before, 
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It is because of this problem that, in order to guarantee the strong 
completeness of the tableau method, we must begin by adopting in one way 
or other the idea of Def. 2.1. Or else, we could allow for an extension of the 
language with a new variable every time that is needed to instantiate a ¬∀-
formula ─in a way similar to the one suggested in Note 2─ : but our choice 
will make things significantly simpler. 

2.2. DEFINITION. A set Φ of formulas is tableau inconsistent in L when 
there is a finite subset Φ0 of Φ which generates a closed tableau all whose 
formulas belong to L. Otherwise it is tableau consistent in L. 

2.3. DEFINITION. A set Φ of formulas is tableau Henkin in L when it 
satisfies the following two conditions: 

(1) it is maximal tableau consistent in L, that is: it is consistent in L, but 
no L-formula can be added to it without destroying its consistency; and 

(2) for any formula ¬∀xϕ which belongs to Φ ─for some variable x and 
formula ϕ─ there is an L-term t such that the formula ¬ϕ (x/t) also belongs 
to Φ. 

In the sequel, sometimes we shall simply say, e.g. ‘consistent in L’, 
meaning ‘tableau consistent in L’, etc. There will be no risk of confusion. 

 
3. Preliminary lemmas 

In some of the following lemmas I shall operate with some variables 
which do not appear at all in certain given sets of formulas; in this way we 
will get convenient simplifications on the details of the proofs without 

                                                                                                                                      
 Ψ = { ∀xPx, ∃x¬Px, Pc: c is a constant of the language }, 
it turns out that the set Ψ is clearly unsatisfiable, but it does not generate a closed tree ─tableau─, 
because the sentence ∃x¬Px cannot be instantiated. 

In particular, Ψ does not generate what they call a ‘canonical derivation’ (pp. 123 and 131-
132), since in such a tree all the premises in question must be present. Hence the result called 
‘Lemma I’ on p. 132 does not follow. And this is one of the bases on which they build up their 
proof of the completeness theorem (with respect to countable sets of sentences). For that matter, 
in the cases of languages containing only finitely many constants (which are allowed, cf. p. 97), 
it follows that their system is not even weakly complete. 

Despite all that, the problem seems to be easily solvable, without having to reconstruct the 
whole proof: for example, by allowing for an extension of the language with a new constant 
every time that one is needed to instantiate an existential sentence. 
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loosing any relevant information. However, it is easy to see that similar 
proofs can also be carried out taking any variables which simply are not 
free in the sets of formulas in question. The only essential difference is that 
in that case we must define the substitution for constants in such a way that 
when the constant in question lies within the scope of a quantifier with a 
variable which appears in the substituting term, that variable of 
quantification is previously changed appropriately (this treatment differs 
from that of Bell and Machover [1]). 

3.1. LEMMA. Let ϕ and ψ be two formulas such that ψ is obtainable from 
ϕ by a single application of one of the tableau rules. Then, if y is a variable 
which does not appear at all either in ϕ or in ψ, and c is any constant, 
ψ (c/y) can also be obtained from ϕ (c/y) by a single application of the 
same tableau rule. 

PROOF. First suppose that ϕ does not contain c, so that ϕ (c/y) = ϕ itself. 
Then, if ψ does not contain c either, ψ (c/y) = ψ and the lemma is trivial. If 
ψ does contain c, then it must have been introduced by the ∀-rule, the only 
rule which allows the introduction of new constants (apart from the equality 
rules, but they do not operate transforming a previous formula). Then 
ϕ = ∀xα for some variable x and formula α, and ψ = α (x/t) for some term t 
containing occurrences of c. In this case it is enough to apply the ∀-rule to 
ϕ using the term t (c/y) rather than t itself. Since c does not appear in α 
─because it does not appear in ϕ ─, we have: 

 α (x/t (c/y)) = α (x/t)(c/y) = ψ (c/y). 
Now suppose that ϕ contains some occurrences of c. We reason 

according to the rule by means of which ψ has been obtained from ϕ. If it is 
a propositional rule the lemma becomes obvious; we deal with the 
quantifier rules. 

Case 1. ∀-rule. Then ϕ = ∀xα for some variable x and formula α 
containing c, and ψ = α (x/t) for some term t. Since y ≠ x ─because y does 
not appear at all in ϕ ─, ϕ (c/y) = ∀xα (c/y). Then we apply the ∀-rule to 
ϕ (c/y) but using the term t (c/y) instead of t. And 

 α (c/y)(x/t (c/y)) = α (x/t)(c/y) = ψ (c/y). 
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Case 2. ¬∀-rule. Then ϕ = ¬∀xα for some variable x and formula α 
containing occurrences of c, and ψ = ¬α (x/z) for some appropriate variable 
z. Since y ≠ z we can equally well apply the ¬∀-rule to 
ϕ (c/y) = ¬∀xα (c/y) to obtain ¬α (c/y)(x/z). But y ≠ x too ─as before─, so: 

 ¬α (c/y)(x/z) = ¬α (x/z)(c/y) = ψ (c/y). █ 
3.2. LEMMA. Let B be a finite branch of a tableau containing a sequence 

of formulas ϕ0, ..., ϕn such that ϕ0 belongs to the initial node, and each of 
the others has been obtained from the immediately preceding one by a 
single application of one of the tableau rules. Then, if y is a variable which 
does not appear at all in any of them and c is any constant, we can replace 
in B each ϕi (for 0 ≤ i ≤ n) by ϕi (c/y) and the resulting branch also agrees 
with the same tableau rules as the original one. 

PROOF. Immediate by ─strong─ induction on n, applying Lemma 3.1.█ 
3.3. LEMMA. Let Φ be any set of formulas and T a confutation for a finite 

subset Φ0 of Φ. Then there is a confutation S for Φ0 such that all constants 
which occur in S also occur in Φ. 

PROOF. Let { c0, ..., cn } be the set of constants which occur in T but not 
in Φ. If it is empty there is nothing to prove. On the other hand, it has to be 
finite, since T is a closed tableau. We then proceed by strong induction on 
n. 

Indeed, assume that Sm is a confutation for Φ0 where neither of c0, ..., cm 
appear (for 0≤m≤n), and let y be a variable which do not appear at all in Φ0 
or Sm ─for definiteness we can take the first one in the alphabetic order of 
the variables of L─. Then we let Sm+1 be the result of replacing every 
formula ψ in Sm by ψ (cm+1/y); since cm+1 does not appear in Φ, for any 
formula ϕ ∈ Φ0 ⊆ Φ, we have ϕ = ϕ (cm+1/y). Then by Lemma 3.2 ─recall 
Sm finite─ Sm+1 is also a tableau for Φ0 according to the rules, and obviously 
closed, since Sm is; in particular, it is obvious that every application of the 
splitting rule for → will remain valid, since the replacement is effected on 
the two resulting formulas. On the other hand, if a formula ψ in Sm has been 
obtained directly by means of one of the equality rules, it is also immediate 
that ψ (cm+1/y) can also be introduced by the same rule. █ 
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3.4. LEMMA. If a set Φ of formulas is consistent in a language, it remains 
so in any other language obtained from it by adding an arbitrary set of new 
constants. 

PROOF. All the new constants of any confutation for Φ can be easily 
removed by Lemma 3.3. █ 

3.5. LEMMA. Let Φ be a finite set of formulas, ϕ a formula and c any 
constant which does not appear in either of them. Then, if for some variable 
x the set Φ ∪ { ϕ (x/c) } is inconsistent, there are infinitely many variables 
which do not appear at all in Φ or ϕ, such that, if y is any of them, the set 
Φ ∪ { ϕ (x/y) } is also inconsistent. 

PROOF. If x is not free in ϕ then we have ϕ (x/c) = ϕ = ϕ (x/y) for any 
variable y, and since Φ is finite there must be infinitely many variables 
which do not occur at all in Φ or ϕ ; in this case there is nothing to prove. 

Now we assume that x is free in ϕ. Therefore ϕ (x/c) contains some 
occurrences of c. Then there is an immediate way of transforming any 
confutation T for Φ ∪ { ϕ (x/c) } into a confutation S for Φ ∪ { ϕ (x/y) }, 
where y is any variable which does not appear at all in T (since T is closed, 
therefore finite, there must be infinitely many of those variables). Indeed, 
all we have to do is to replace every formula ψ of T by ψ (c/y). In 
particular, the initial node remains almost the same (since c does not appear 
in Φ) only with ϕ (x/y) substituted for ϕ (x/c). (Notice 
ϕ (x/c)(c/y) = ϕ (x/y).) 

To see that S is also a tableau according to the rules, first suppose that a 
formula ψ in T has been obtained from ϕ (x/c) after a series of applications 
of the tableau rules yielding the formulas ψ0, ..., ψn = ψ. Then, by Lemma 
3.2 ─since y does not appear at all in T─ the new sequence ϕ (x/y), ψ0(c/y), 
..., ψn (c/y) also agrees with the same tableau rules as the old one. Now 
suppose that ψ has been obtained after a series of applications of the rules 
from a formula α ∈ Φ. But since c does not occur in α ─because it does not 
occur in the whole of Φ ─, α = α (c/y), so again by Lemma 3.2 the 
corresponding sequence in S also agrees with the same rules as the old one. 
Finally, if ψ has been introduced directly by means of one of the equality 
rules, again it is immediate that ψ (c/y) can also be introduced by the same 
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rule. As before, it is clear that every application of the splitting rule for → 
will remain valid in S. 

The fact that S is closed is obvious given that T is. █ 
3.6. LEMMA. Let Φ be a consistent set of formulas such that ¬∀xϕ ∈ Φ 

for some variable x and formula ϕ, and let the constant c do not occur in Φ. 
Then the set Φ ∪ { ¬ϕ (x/c) } is also consistent. 

PROOF. Suppose Φ ∪ { ¬ϕ (x/c) } is inconsistent. Then there is a finite 
Φ0 ⊆ Φ such that Φ0 ∪ { ¬ϕ (x/c) } is inconsistent too. Let T then be a 
confutation for Φ0 ∪ { ¬ϕ (x/c) }. Since ¬∀xϕ ∈ Φ and c does not occur in 
Φ, c does not occur in ϕ either. Hence by Lemma 3.5 Φ ∪ { ¬ϕ (x/y) } is 
also inconsistent for some variable y which does not appear at all in Φ. 
Moreover, since there are infinitely many of those variables we can choose 
y so that it does not appear free in T ─T is finite, since it is a closed 
tableau─. 

But then ¬ϕ (x/y) can be obtained immediately from ¬∀xϕ by a single 
application of the ¬∀-rule, so Φ itself is inconsistent. █ 

 
4. The proof of strong completeness 

I will not reproduce the whole proof in detail, since it is similar to the one 
for Henkin sets of the predicate calculus, with minor modifications (Bell 
and Machover [1] give a detailed version of the latter, which is the one I 
shall closely follow here.) Thus, I shall only give an outline, indicating 
where some of the previous lemmas (in particular 3.4 and 3.6) are needed. 

We start by adding to L a set of new individual constants of cardinality 
equal to that of L itself, say λ. Hence, if L+ is the resulting new language, 
we have ⏐L+⏐ = ⏐L⏐ = λ. 

Then, let Φ be any arbitrary set of formulas of L. The proof proceeds 
from a fixed well-ordering on the formulas of L+: { ϕξ : ξ < λ }; and a 
definition by transfinite recursion of a set Φξ of formulas of L+ (for every 
ξ ≤ λ), satisfying the following three conditions: 

(1) Φζ ⊆ Φξ for all ζ < ξ, 
(2) Φξ is consistent in L+, and 
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(3) Φξ contains at most ⏐ξ⏐ of the new constants. 
The definition goes as follows. We put, of course, Φ0 = Φ ; hence we 

have that Φ0 is consistent also in L by Lemma 3.4, and the two conditions 
hold vacuously. 

Next, if ξ is a limit ordinal we put Φξ = ∪ { Φζ : ζ < ξ }. Hence condition 
(1) holds by definition and (2) and (3) follow directly from the assumption 
that all Φζ for ζ < ξ satisfy them. 

Then, if ξ is a successor ordinal, say ξ = ζ + 1, we distinguish three cases: 
(a) If ϕζ is a formula other than ¬∀xϕ (for a variable x and formula ϕ), 

and Φζ ∪ { ϕζ } is consistent, then we put Φξ = Φζ ∪ { ϕζ }. It is immediate 
to see that the three conditions hold. 

(b) If ϕζ is of the form ¬∀xϕ (for a variable x and formula ϕ), and 
Φζ ∪ { ϕζ } is consistent, then by (3) there is at least a new constant c 
which does neither occur in Φζ nor in ϕζ . In that case we put 

 Φξ = Φζ ∪ { ϕζ , ¬ϕ (x/c) }. 
Hence conditions (1) and (3) clearly hold, once more, and so does (2) by 

our previous lemma 3.5. And finally, 
(c) If Φζ ∪ { ϕζ } is inconsistent we put Φξ = Φζ , and the three 

conditions are trivially satisfied. 
It is not difficult to show, then that the resulting set Φλ is a tableau 

Henkin set in L+. Indeed, if an L+-formula ψ (which must be some ϕζ for 
some ζ < λ in the well-ordering of the formulas of L+) has been left out of 
Φλ , this can only mean that the corresponding set Φξ ∪ { ϕξ } was 
inconsistent, hence so would be Φλ ∪ { ϕξ } itself. On the other hand, the 
consistency of Φξ alone is guaranteed by condition (2). 

And finally, again by the definition of Φλ , it is evident that it must 
contain a formula ¬ϕ (x/c) for every ¬∀xϕ belonging to it, that is: Φλ is 
saturated with respect to instantiations of ¬∀. 

It is easy to see that Φλ , being a tableau Henkin set, is clearly a Hintikka 
set as well, and the proof that it is satisfiable proceeds just as usual ─in 
particular, Φλ is shown to be satisfied by a valuation whose domain has a 
cardinality smaller or equal to λ─. As before, for full details we refer to [1]. 
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Our original set is evidently included in Φλ , so it itself is satisfiable as 
well. And we have established the strong satisfaction theorem, from which 
the strong completeness theorem follows easily ─the two theorems being, 
indeed, essentially equivalent─. 
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