Social media platforms, like Twitter, offer a face-saving ability that allows users to express themselves employing figurative language devices such as irony to achieve different communication purposes. Dealing with such kind of content represents a big challenge for computational linguistics. Irony is closely associated with the indirect expression of feelings, emotions and evaluations. Interest in detecting the presence of irony in social media texts has grown significantly in the recent years.
In this thesis, we introduce the problem of detecting irony in social media under a computational linguistics perspective. We propose to address this task by focusing, in particular, on the role of affective information for detecting the presence of such figurative language device.
Attempting to take advantage of the subjective intrinsic value enclosed in ironic expressions, we present a novel model, called emotIDM, for detecting irony relying on a wide range of affective features. For characterising an ironic utterance, we used an extensive set of resources covering different facets of affect from sentiment to finer-grained emotions. Results show that emotIDM has a competitive performance across the experiments carried out, validating the effectiveness of the proposed approach.
Another objective of the thesis is to investigate the differences among tweets labeled with #irony and #sarcasm. Our aim is to contribute to the less investigated topic in computational linguistics on the separation between irony and sarcasm in social media, again, with a special focus on affective features. We also studied a less explored hashtag: #not. We find data-driven arguments on the differences among tweets containing these hashtags, suggesting that the above mentioned hashtags are used to refer different figurative language devices.
We identify promising features based on affect-related phenomena for discriminating among different kinds of figurative language devices. We also analyse the role of polarity reversal in tweets containing ironic hashtags, observing that the impact of such phenomenon varies.
In the case of tweets labeled with #sarcasm often there is a full reversal, whereas in the case of those tagged with #irony there is an attenuation of the polarity.
We analyse the impact of irony and sarcasm on sentiment analysis, observing a drop in the performance of NLP systems developed for this task when irony is present. Therefore, we explored the possible use of our findings in irony detection for the development of an irony-aware sentiment analysis system, assuming that the identification of ironic content could help to improve the correct identification of sentiment polarity. To this aim, we incorporated emotIDM into a pipeline for determining the polarity of a given Twitter message.
We compared our results with the state of the art determined by the "Semeval-2015 Task 11" shared task, demonstrating the relevance of considering affective information together with features alerting on the presence of irony for performing sentiment analysis of figurative language for this kind of social media texts. To summarize, we demonstrated the usefulness of exploiting different facets of affective information for dealing with the presence of irony in Twitter.